Control of a quantum particle in a moving box

نویسندگان

  • Pierre Rouchon
  • Gabriel Turinici
چکیده

This 1-D Schrödinger equation describes the non relativistic motion of a single charged particle (mass m = 1, = 1) with a potential V in a uniform electric field t → u(t). With v̈ = −u, (1) represents also the dynamics of a particle in a non Galilean frame of absolute position v (see, e.g., [9]). A change of independent variables (t, q) → (t, z) and dependent variable ψ → φ, transform (1) into (2) where the control appears as a shift on the space variable. These classical transformations are as follows (see, e.g., [2]). Instead of considering u as control, take v defined by v̈ = −u as control. Then

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

When the classical & quantum mechanical considerations hint to a single point; a microscopic particle in a one dimensional box with two infinite walls and a linear potential inside it

In this paper we have solved analytically the Schrödinger equation for a microscopic particle in a one-dimensional box with two infinite walls, which the potential function inside it, has a linear form. Based on the solutions of this special quantum mechanical system, we have shown that as the quantum number approaches infinity the expectation values of microscopic particle position and square ...

متن کامل

Berry phase for a particle in an infinite spherical potential well with moving wall

In this paper we calculate the Berry phase for a wave function of a particle in an infinite spherical potential well with adiabatically varying. In order to do this, we need the solutions of the corresponding Schrödinger equation with a time dependent Hamiltonian. Here, we obtain these solutions for the first time. In addition, we calculate the Berry phase in one dimensional case for an infinit...

متن کامل

Hydrodynamics of a Gas-Solid Fluidized Bed at Elevated Temperatures Using the Radioactive Particle Tracking Technique

Effect of temperature on hydrodynamics of bubbling gas-solid fluidized beds was investigated.  Experiments were carried out in the range of 25-600 ºC and different superficial gas velocities in the range of 0.17-0.78 m/s with sand particles. Time-position trajectory of particles was obtained by radioactive particle tracking technique. These data were used for determination of mean velocitie...

متن کامل

Control of a Quantum Particle in a Moving Potential Well

The control is the potential well absolute position. For two kinds of potential shape (periodic and box), we propose approximated solutions to the stead-state motion planing problem: steering in finite time the particle from an initial well position to a final well position, the initial and final particle energies being identical. This problem is a quantum analogue of the water tank problem, wh...

متن کامل

ذره در چاه کوانتومی با دیواره متحرک

We study the problem of a quantum particle in an infinite one dimensional potential well with a moving wall. Based on the effective Hamiltonian approach and using the gauge transformation concepts, we show that the effect of the moving wall appears as an extra phase factor in the wave function which depends on the velocity of the wall. 

متن کامل

Modelling the catalyst fragmentation pattern in relation to molecular properties and particle overheating in olefin polymerization

A two-dimensional single particle finite element model was used to examine the effects of particle fragmental pattern on the average molecular weights, polymerization rate and particle overheating in heterogeneous Ziegler-Natta olefin polymerization. A two-site catalyst kinetic mechanism was employed together with a dynamic two-dimensional molecular species in diffusion-reaction equation. The i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002